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On the degree of the minimal equation of the matrices in 
first-order relativistic wave equations 

P M Mathewst, M Seetharamant and Y Takahashi$ 
t Department of Theoretical Physics, University of Madras, Madras-6000 25, India 
$ Theoretical Physics Institute, University of Alberta, Edmonton, Alberta T6G 2 J1, 
Canada 

Received 10 March 1980 

Abstract. Starting with an analysis of the general structure of the matrix P o  entering in 
first-order relativistic wave equations, we show that the degree of the minimal equation of 
P o  is determined by the size and nature of the various spin blocks of the ‘skeleton matrix’ of 
the theory. Since it is the numbers of Lorentz irreducible representations contributing to 
particular spins which determine the sizes of the spin blocks (and the value j, of the 
maximum spin contained in I) has no direct bearing on these), the reason for the failure of 
the Umezawa-Visconti rule and its extrapolation by Chandrasekaran et a1 becomes clear. 
We obtain some general results concerning the minimal degree in certain types of theories 
and on certain procedures whereby the minimal degree can be raised without altering j,,,, 
and finally analyse a few interesting examples. 

1. Introduction 

It has long been known, from the work of Harish-Chandra (1947), that manifestly 
covariant relativistic wave equations of the first-order form 

(-iP”a, + m)I) = 0 (1.1) 

describe particles of unique mass m if and only if the minimal equation of P o  (and of the 
Pi) is of the form 

( P O ) l + *  = ( P O ) ’  (1.2) 

where I is some non-negative integer. By an ingenious argument based on the fact that 
products of r factors of P”  transform like tensors of rank P under similarity trans- 
formation by the matrices S(A)  constituting the representation of the Lorentz group 
(LG) according to which I)  transforms, Umezawa and Visconti (1956) (see also 
Takahashi 1969) concluded that the degree 1 + 2 of the minimal equation cannot exceed 
(2jm + 1) where j m  is the maximurn spin involved in the representation S(A). However, 
a flaw in the argument has recently been pointed out by Glass (1971) who has also 
constructed a counter example to the Umezawa-Visconti theorem: a theory withj, = 5 
but 1 + 2 = 5 > (2jm + 1). Nevertheless the deeper reasons for the inapplicability of the 
Umezawa-Visconti argument have not been analysed, nor have the factors which are in 
fact responsible for any limitations on the value of 1 been identified. In this situation 
there has been, perhaps not surprisingly, a continuing misunderstanding of the rele- 
vance of the transformation property of products of the P ” ,  referred to above, to the 
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question of the minimal degree, 1 + 2. A case in point is the claim of Chandrasekaran et 
a l i  (1972) (based on a rather ‘fuzzy’ though plausible-sounding interpretation of the 
transformation property), which is cited in the recent work of Cox (1978), namely that a 
lower bound on 1 is imposed by the physical spin s (s sjm) of the particle described by 
the wave equation (1.1). No such bound in fact exists; the Hurley equation (Hurley 
1971) for arbitrary spin s, which has 1 = 1 independent of s, provides a counter example. 

Our aim in this paper is to elucidate the problem which is of particular interest in 
view of recent work (Mathews et al 1979, Seetharaman et al 1979, Amar and Dozzio 
1972, 1975) showing that the number and variety of consistency problems which arise 
in interacting higher spin theories are strongly correlated with the degree I + 2 of the 
minimal equation of Po. We show that I is determined primarily by the dimension and 
structure of the ‘skeleton matrix’ of the p” (for definition see D 2). The highest spin jin 
occurring in S ( h )  enters only indirectly, through the number of irreducible represen- 
tations (hereafter abbreviated to IR’S) with which the IR’S containing j m  can be coupled 
through the p”. 

In § 2 we focus briefly on the saiient features of the general structure of the P o  matrix 
which are relevant to our work-Features which follow from its behaviour as the 
time-like component of a four-vector. 

2. Structure of P O  

The finite dimensional IR’S of the proper LG are conveniently labelled by (m,  n ) ,  
associated with the eigenvalues m ( m  + 1) and n ( n  -t 1) of the Casimir operators M 2  and 
AT2 where M, N are given in terms of the generators J and K of rotations and boosts by 

(2.1) 

The abbreviations T = (m, n ) ,  T’= (m‘, n‘) ,  etc., are often used. The basis states within 
an IR may be chosen to diagonalise either M3 and N3 or J 2  and J3.  The latter basis is best 
suited for the analysis of the spin content, and we shall adopt it in this paper (Gel’fand et 
al 1963, Hurley and Sudarshan 1974). Note that since J = M + N  (and M and N are 
mutually commuting angular momentum-like operators), states with j = ( m  f n ) ,  ( m  + 
n .- l), . , . , Im - nI are present in the IR space (m, n ) .  

As shown by Bhabha (1945) (see also Corson 1953) the p” can have non-vanishing 
matrix elements between two IR’S only if Im‘ - ?n/ = In’- nl = $. Further, since P o  
commutes with J it can have no matrix elements connecting states with unequal values 
of j ;  and the ( 2 j  + 1) x (2j  + 1) block connecting the (2j  + 1) states with given J’ in T with 
similar states in T’ must be a multiple of the unit matrix. This multiple decomposes into 
one factor, say g:T’*T),  which is in the nature of a Lorentz group Clebsch-Gordan 
coefficient$ (determined purely by the fact that P o  is the time-like component of a 
four-vector), and another factor c(“~‘) which is a ‘reduced matrix element’ characteris- 
ing the particular four-vector in question. This second factor, naturally, depends only 
on the Casimir operators of the IR’S connected, and not on the internal quantum 
numbers ( j ,  a)  of any IR. Thus the part of P o  connecting states with angular momentum 
j in r ’  with those in T is 

M = &I + i K j  N = :(J - iK). 

(2.2) c ( ~ ’ , ~ )  ( T ’ . T ~  

g /  4 
f See also Sanlhanam and Tekumalla (1974). 
I Values of gj“”’ for specific T ’ ,  T can be easily worked out. See, for instance, Hurley and Sudarshan (1 974). 
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where I, is the unit matrix of dimension ( 2 j  + 1). We shall refer to this as the ( T ' ,  T )  part 
of the spin-j block of bo. If either T'  or T (or both) occurs in S(A) more than once, then 
the value of the reduced matrix element connecting each pair (one of the T' with one of 
the T )  is unrelated to that for any of the other pairs, but all are multiplied by the same 
g~" ' " .  Then instead of (2.2) one has 

c(T' .T) g1 i r ' . T )  x l ,  (2.3) 

where C""" is an a' x a matrix with arbitrary elements (a  and a' being the multi- 
plicities of T and T' in S(A)). The direct product with l, indicates the fact that in the 
spin-j block, each element of C'"'" appears multiplied by the unit matrix I, of 
dimension ( 2 j  + 1). The spin-j block is made up as an array of sub-blocks (2.3) 
associated with all those pairs T ,  T'  such that T ,  T '  E S,(h). Here S, (A) is the direct sum of 
all those IR'S in S ( A )  which contain the particular j of interest, i.e. such that (m + n )  5 
j 2 Im - n I D  (Note that the Si,)(A) for different j values are in general overlapping, not 
exclusive.) We shall denote this spin-j block by p?,). We shall also introduce the name 
skeleton matrix or reduced matrix for the matrix C made up of the blocks Ci"3" for all 
T ' ,  T E S(A). It is of dimension Ea, equal to the total number of IR'S (of the proper LG) 
which are present in S(A), including all multiplicities. The arrangement of blocks in the 
skeleton matrix depends of course on the order in which the various IR'S are taken. 

A type of ordering which leads to considerable simplicity in the form of C is the 
following. Classify all the IR'S occurring in S(h) into two sets, such that if both T and 7' 
are within one and the same set, (m - m')  and (n  - n ' )  are integral, while if T belongs to 
one set and T' to the other, then (m  - m') and ( n  - n ' )  are both half-odd-integral. In 
labelling the rows and columns of C, exhaust all the IR'S of either one of the above sets 
and then proceed to the IR'S of the other set. In so doing we obtain for P o  the form 

p " ( 0  A) 
B 0 '  (2.4) 

This must evidently be the case since P o  can have non-vanishing elements only between 
IR'S T ,  T'  such that 1"- mi= In' -nl = i, a condition which cannot be met if *r and T' 
belong to one and the same set as defined above. 

It may be noted that each of the spin blocks pp,, will also then necessarily have a 
form similar to the above. 

3. The spin blocks P?J and the minimal degree of Bo 

When a basis which diagonalises J 2  is chosen and P o  is expressed as a direct sum of its 
spin-j blocks (i.e. with block @:,I along the diagonal and all off-diagonal blocks 
vanishing), the Harish-Chandra condition (1.2) can evidently be translated into condi- 
tions on the spin blocks, One is thus led to the requirement that 

(p:,)YJt2== (LC,,YJ (3.1) 

for one or more values of j ,  with p : l )  nilpotent for all other j .  If it is further stipulated 
that only a single spin (say s) be admitted by (1.1), it is necessary that the minimal 
equations of the spin blocks be 

(p:,)VJ+*s,$ = (p : , ) )~~ .  (3.2) 

If the p:,) are imagined to be reduced to Jordan canonical form by suitable similarity 



2866 P MMathews,  M Seetharaman and Y Takahashi 

transformations, (3.2) tells us that the reduced form of Pyi) contains at least one 
nilpotent irreducible Jordan block of dimension lj  (besides possibly others of lower 
dimension but none bigger); for j = s alone there is an additional strictly diagonal part 
made up of eigenvalues + 1 and - 1. In the following lj  will be referred to as the degree of 
nilpotency of  ,Byj). A little reflection now shows that = ( P O ) '  if 1 is the largest of 
the lj ,  but not for any lower value of 1. In other words, 1 in the Harish-Chandra equation 
is equal to the largest of the li, i.e. the dimension of the largest nilpoint irreducible 
Jordan block in the canonical form of Po.  The question of the minimal degree of P o  thus 
reduces to the problem of finding or placing bounds on the dimensions of nilpotent 
blocks in Po,  given the IR'S present (and their multiplicities) in S(A). 

At this point it is self-evident that there need not be any immediate relation between 
1 and the spin content of S ( h ) .  We have seen that P:j, is of the form (Cg)(i) x Ij where 
(Cg) ( j )  is made up of the blocks C(r',r)g,(T',T) of (2.3). The dimension of I, is (2j + l), but 
this fact obviously has no bearing on the value of li; it is the matrix (Cg)cij which 
determines the value of 1,. The dimension of (Cg) ( j ) ,  i.e. the number of IR'S contributing 
to spin j in S(h)-counting all multiplicities-places an upper bound on 1,. 

This last mentioned fact leads immediately to a negation of the claim of Chan- 
drasekaran et a1 (1972) that 1 cannot be lower than (2s + 1) where s is the unique spin 
allowed by the wave equation. The example of the Hurley equation brings home this 
point forcefully. The equation involves just two IR'S (s, 0) and (s - &  i) each occurring 
once. Only the latter contributes to spin (s - 1) while both the IR'S contribute to spin s. 
Thus (Cg)(s) is a 2 x 2 matrix whose eigenvalues must be +1 and -1 while (Cg)(s--l) = 0. 
Hence ls = 0 and = 1, giving 1 = 1 i.e. (Po)' =: P @ .  The degree of the minimal 
equation is therefore less than (2s+1) for any s > l .  The fact that there is no 
naturally-defined parity operator or a conventional kind of Lagrangian in the Hurley 
theory is not really of relevance, insofar as the Umezawa-Visconti proof and Chan- 
drasekaran et al's extrapolation of it do not rest on the existence of either. In any case, 
by extending the wavefunctions to include also parts (0, s) and (& s -$) conjugate to 
what was considered above, one can readily construct a Lagrangian theory with parity 
invariancet without raising the value of 1. 

The failure of the Umezawa-Visconti upper bound on 1 can also be understood in a 
similar fashion. In the Glass equation, which involves the six IR'S (1, $) + 2(0, i) t (3, 1) + 
2(i, O) ,  only two of the IR'S contribute to the spin-: block leading to 1312 = 0 as it is 
required that the equation should describe spin 5;  all six contribute to j = $ but the 
degree of nilpotency of this block turns out to be 1112 = 3. Consequently, the minimal 
degree of P o  is 5, exceeding the Umezawa-Visconti value 4 (corresponding to j m  == ?). 

4. Some general results 

4. I .  Case of  half-integer spins with parity invariance 

If invariance under space inversion is required, it is necessary that every IR 7 (m, a )  
present in S(A) must be accompanied by its conjugate i = (n ,  m) .  It is also readily seen 
that when classification of the IR'S into two sets is done as described at the end of the last 
section, i is in the second set if T is in the first, and vice versa. Further, by ordering the 
IR'S as T ~ ,  rz ,  . . . , T ~ ,  T ~ ,  . . . , and using the fact that C'""' = C("3" for space-inversion 

t This theory will give two spin-s particles degenerate in mass, but once again this fact is of no relevance to the 
treatments of Umezawa and Visconti and Chandrasekaran er al. 

, .  
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invariance, one gets the form (2.4) for Po,  with A = B. This matrix is equivalent to 

(t -:), and correspondingly, pyj) has an equivalent form 

( : ( j )  - : ( j ) j .  
It is of course the direct product of a unit matrix of dimension (2 j  + 1) with a skeleton 
part whose dimension, say Lj, is equal to the number of IR’S in S(A) which contribute to 
spin j .  For j # s, p:jl and hence A(jj are to be nilpotent and it is clear that the degree of 
nilpotency lj  cannot exceed the dimension $Lj of the skeleton part of Thus 

lj 6 $Lj (i # SI. 
For j = s, a single unit eigenvalue must come from the skeleton part of A(,, ,  assuming 
there is no mass degeneracy. So the degree of nilpotency must obey 

1, s ($Ls - 1) .  

These relations determine the upper bound on 1, once S(h) is specified. We have 
already seen from the example of the Glass equation that by the device of increasing the 
multiplicities of IR’S (without introducing any more distinct IR’S) one can increase the 1, 
and hence the minimal degree I + 2, without increasing the maximal spin j m  contained in 
S(h). Another systematic way of altering a given equation so as to increase the minimal 
degree is through the introduction of barnacles. 

4.2. Increase of minimal degree through barnacles 

If all the elements of one or more rows (or columns) of the skeleton matrix vanish, then 
it can be shown that the parts of the wavefunction corresponding to these rows/columns 
either vanish or can be expressed in terms of the rest of the wavefunction. Such parts 
which have no essential or independent roles are called barnacles (Hurley and Sudar- 
shan 1975, Khalil 1978). 

Given a P o  in the form (2.4), such that I = 2jm - 1, we can readily obtain another P o  
with a higher minimal degree (without raising j m )  by introducing a suitable barnacle. For 
example, suppose the original p” was (2.4), and the augmented po-call it po’-has 

instead of A and B respectively (with the null diagonal blocks in P o  also correspond- 
ingly enlarged). Suppose also that the minimal nilpotent degree I of the original P o  was 
an even number, 2r. Its minimal equation, (/3°)2‘+2 = (Po)”, then yields 

(AB)‘+’ = (AB)‘, 

(BA)‘+’ = (BA)‘, 
(4.2) 

r being the smallest integer for which these properties hold. These equations do not in 
general force corresponding equations (with the same value of r )  on Po’, for (A’B’)‘+’, 
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which is equal to 

0 

does not in general reduce to (A 'B ' ) I  by virtue of (4.2) alone. However, one can readily 
verify that (ph)2rt3 is necessarily equal to (ph)2'i'*. So the minimal nilpotent degree of 
pb is, in general, 1' = 2r + 1 = 1 + 1. 

One can repeat the process, starting now with Pb, to produce a P6 whose minimal 
degree is still higher, and so on. If the intention is to construct an example violating the 
Umezawa-Visconti condition, it would be necessary that the additional parts to the 
wavefunction, which are introduced in the form of barnacles, do not contain any spin 
higher than the original jm. 

It can be shown that by choosing A, and B, appropriately, parity invariance can be 
preserved even while adding barnacles (Khalil 1978). 

5. Examples 

5.1. Augmented Duffin-Kemmer P o  
Suppose that the Duffin-Kemmer wavefunction (for spin-1 particles) for which S(A) - 
( 1 , O )  + (t, t )  + (0, 1) is enlarged to include a scalar part (0, 0) as a barnacle. The most 
general form for Po' is shown below: 

(L 1 0 
2 ,  2)  

1 
0 0 Y 
a P 0 

The two diagonal blocks which have been left blank are null. Each element in the above 
is a (2j'  + 1) x (2 j  + 1) matrix; when j = j '  it is a multiple of the unit matrix of dimension 
(2 j  + 1). The Duffin-Kemmer P o  is obtained if the first row and column of the above are 
deleted and the usual values (which are consistent with (5.2) below) are assigned for 
a ,  P, a ' ,  P ' .  

The s = 1 and s = 0 blocks of the above matrix are 

The spin-1, unique-mass, conditions are that pFo, be nilpotent and 

(5.1) 
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In the Duffin-Kemmer case, wherein the first row and column of @yo, don’t exist, 
@Fo, = 0 yielding, together with (5.2), the usual minimal equation = P o .  However, 
with the inclusion of the extra scalar part-either y or y’ or both being nonzero-@&) is 
not null, but it can be made nilpotent, 

(P:”))2 = 0, (5.3) 
by choosing yy’ = 0. With y or y’ thus forced to vanish, the newly introduced scalar part 
of the wavefunction becomes a barnacle. With (5.2) and (5.3) as the minimal equations 
for = (Po)’. The degree of this 
equation being higher than (2jm + 1) = 3, the Umezawa-Visconti theorem is seen to be 
violated. Further increase of the minimal degree by the introduction of more barnacles 
is readily achieved. 

and @yo,, the minimal equation for P o  is 

5.2. The Singh-Hagen equations 

The arbitrary spin system of equations proposed by these authors (Singh and Hagen 
1974a, b) provides a good illustration of some of the points raised above. As their 
equations for fermions have a relatively simple structure, we analyse these first before 
taking up the equations for bosons. 

5.2.1. Equations for fermions of spin s. The Singh-Hagen equations for fermions (Singh 
and Hagen 1974b) are a generalisation of the familiar Rarita-khwinger (1941) 
equation for spin-2 particles. The wavefunction transforms according to the reducible 
representation 

4 

The equation describes particles of unique mass and half-integral spin s, which is also 
the highest spin ( j m )  contained in 4. In the following we shall take s - 5  to be an odd 
integer. (This is necessary in order to be completely specific; the case of s - 5  even is 
entirely parallel.) Then P o  can be written in the form (2.4) by ordering the IK’S in 4 as 
D + D where 

D =  (2s: -- 1 , 2 ~ q  1) + (2s --,-- - 3 2s - 1) +2-- (2s; 3 , 2 ~ ;  5) 
4 4 

2s - 7 2s - 5 )  
(2s; 7 , 2 ~ ;  9) + , . . +2(0,5) c 2  -- - 

and 6 contains the conjugate of the IR’S in D. As the equations are parity invariant, A 
and R in P o  of (2.4) are equal in the present case, and are square matrices. The spin-j 
block in Po,  namely /3:i), will also have a similar form 

which by a similarity transformation can be brought to -))ij) xI i .  Since the 



2870 P MMathews,  M Seetharaman and Y Takahashi 

maximum spin s is contained in D only once, A,  is just a number (1 x 1 matrix) and 
hence it has to be equal to 1 in order to ensure that (p:,))z = 1. For j < s, a count of the 
IR’S in D which contain the spin j leads readily to the conclusion that Ai is a square 
matrix of dimension (2s - 2 j ) .  Clearly, the largest of these is All2 with dimension 
2s - 1, and its degree of nilpotency cannot exceed 2s - 1. The degree of nilpotency of 
the pPll2) block is clearly the same as that of All2 and we are able then to conclude that 
the degree of nilpotency of P o  as a whole cannot exceed 2s - 1. 

5.2.2. Equations for bosons of spin s. The familar equations for integer spin are 
second-order equations employing symmetric tensor representations of LG (Proca 
1936, Takahashi and Palmer 1970, Shay and Good 1969, Vel0 1972). To write 
equations for unique-mass particles of arbitrary integer spin s in first-order form, one 
has necessarily to introduce further tensors (both symmetric and non-symmetric). In 
their formulation Singh and Hagen (1974a) have constructed such a system of first- 
order equations by employing a wavefunction which transformst as D1 + Dz where, for 
s>2, 

D1=($s,3s)+(/s-1,/s-l)+ * * * +(l,  1)+(0,0) 1 1 

+[(is - 1, is -2 )+  (is -2, ss - 1)+ (is -2 , i s  -2)] 

+ [ ( i s  - 2, :s - 3) + (is - 3, 5s - 2) + (4s - 3, is - 311 + . . . 
~ ~ + ( ~ , 2 ) ~ + ( 1 , ~ ~ 1 + ~ ~ ~ , 0 ) + ( 0 , 1 ) 1 + ( 0 ,  O), 

1 

3 1  5 1 1  Dz = (is -3, 4s - p ) + ( z s  -3,;s -z)+ . . . + ($,;)+(I, I) 
+ [(is + 3,;s - i) + (is - i, is + 3) + (is - 3, is - 5 ) ]  
+ [(is - i, $3 - 8) + (is - $,is - i)] + [(is - $,is - 2) 
+(Is -/, /s - T ) + ( T S  -/,Is -/)I+ . . . +[(?,i)+(i, ?)+ti, $)I+($, 3,. 1 5 1  3 1 5 1  5 

The P o  of the theory corresponding to the above ordering of the representations will 
have the form (2.4) and, correspondingly, the spin-j block will automatically have the 
similar form 

Unlike in the fermion case, the matrices A ,  Bi are now rectangular, since the number of 
IR’S involved in D1 and Dz are not equal. 

To determine the dimension of Ai and Bi, let us start with jm = s (the maximum spin 
in $) which is also the spin of the particle described by the equation. It is easily seen that 
one IR, (is, is), in D1 and two IR’S, (4s + i, is - 3) and (3s - 2 , ~ s  + i), in 0 2  contain s and 

therefore A, is a 1 x 2 matrix and B, is a 2 x 1 matrix. Thus (is :s) is a 3 x 3 matrix. 

Since it must give rise to the eigenvalues *1 once each (and the other eigenvalue must 
be zero) its minimal equation has to be of the form (py,,)3 = For the next lower 

1 1 1  

+ W e  shall assume s to be an even integer in order to make the groupings of the IR’S into D1 and D2 
completely specific. The case of odd s is entirely parallel. 

For s < 2  the equations can be formulated with a smaller number of IR’S than indicated by the general 
scheme and so they are treated as a special case by these authors (see also Hagen 1971, Chang 1967, 
Schwinger 1963). 
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spin, (s - l), A,-1 is a 1 x 3 matrix (Bs-l is 3 x 1)  and so it might appear that the 

As-1) is 4. But it cannot exceed 3 for the (Bs-l 0 
maximum degree of nilpotency of 

following reason. The rank of A,-1 is 1 and so is that of B,-l. Therefore, the rank r,-l of 

As-1) is 2. Hence the degree of nilpotency (which is r S p 1  + 1 at most) the matrix 

is 3. A similar situation arises for other lower spins as well and the degree of nilpotency 
of any of the lower spin blocks is much less than its dimension. Let us demonstrate this 
for the spin-1 skeleton sub-block which has the highest dimension of all the spin blocks. 
A1 is a ( 2 s - 4 ) ~ ( 2 s - l )  matrix and B1 is a ( 2 s - l ) x ( 2 s - 4 )  matrix. Based on the 

argument given above for the (s - 1) block, we conclude that the rank of 

cannot exceed 2(2s - 4). Hence the degree of nilpotency 11 is <(4s - 7). If the value 
of l1 were indeed (4s -7)  the minimal degree of P o  would be 4s - 5 ,  which for large s 
would be much greater than 2s+l- the Umezawa-Visconti upper limit. It 
turns out however, as shown below, that the value of 11 does not 
exceed (2s-1)  and therefore the minimal degree of P o  will be (Po)1+2=(/30)'  
with lG(2s -1 ) .  To demonstrate this, let us define, following Singh and Hagen, 
tensors q f ~ ( ~ ) ( k  = 0, . . . , s)  which transform according to the IR (&, t k )  and 

( p  = 2 , .  . . , s -3 ,  s - 1) with the transformation property { [ ( p  + 1)/2, ( p  - 1)/2]+ 
[ ( p  - 1)/2, ( p  + 1)/2]+[(p - 1)/2, ( p  - 1)/2)]}. transforms as [(s - 1)/2, (s - 
3)/2] + [(s - 3)/2, (s - 1)/2)], H(l )  as (0 ,  1) + (1, 0), H(O) as ( k ,  4) and H as (0,O). From 
the equations of motion one can readily see that the form of the A1 matrix will be as 
follows: 

(Bs-l 0 

(BoI 3 

+IS' I 
I 

J 
J 

(The crosses indicate single numbers 

+ 
+ 

t 

+ 

while the + symbols stand for 1 x 3 matrices 
(except for the H ( s - 2 )  colukn where it is 1 X 2), the tick marks ( 4 )  are 3 x 1 matrices and 
blanks are zero.) By elementary transformations one can easily convince oneself that 
the rank of the above matrix does not exceed (s - 1) .  By an exactly similar construction 
one can verify that the rank of B1 also does not exceed (s - 1). Therefore the rank rl of 
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( BoI tl) cannot exceed (2s  - 2), and hence the minimal degree of P o  will be subject to 

the bound stated above. 
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